2,794 research outputs found

    Development of the technological process for the production of the electrostatic curved beam actuator for pneumatic microvalves

    Get PDF
    This work focuses on the development of an effective technological process for the production of the electrostatic curved beam actuator capable to be used as a driving element in different devices such as microswitches or microvalves. Main attention was drawn to the investigation of electroplating technique as a critical process in the microactuator fabrication as well as to the design of the actuator. In addition, usability of ceramic substrates for the microactuator and microvalve production was examined. The idea behind it was that ceramic substrates can be preprocessed and delivered already with necessary electrical connections on it. This would make the entire production process simpler and cheaper. Several types of polished alumina (Al2O3) substrates were used for this purpose. Electrostatic actuation principle was chosen for its good scaling properties to small dimensions, low power consumption, smaller size and higher switching speed. Curved shape of the actuator allows to reduce its pull-in voltage and thus to increase the amplitude of motion as compared to the parallel-plate structures. The material of the actuator is nickel. It was chosen for its good mechanical properties and relative simplicity of processing. Double layer nickel electroplating was used to produce the microactuator. The layers have different stress gradients controlled by current density during the electroplating process, making it possible to achieve the desired bending of the structure. Compared to bimetallic bending cantilever actuators, the curvature of the single-metal beam is less dependable on temperature and aging. Thus, more stable performance under changing working conditions was ensured. In order to avoid sticking of the microactuator to the isolation layer in the closed state, an array of stand-off bumps was added on the back-side of the beam. These bumps reduce the contact area and increase the distance between the actuator and the isolation layer. Fifteen design variants of the actuator differing in length and width were fabricated in order find the most effective solution for given system requirements. Based on the actuators technological process developed in this work, a simple electrostatic microvalve was designed and produced. Final variants of microvalve were fabricated on a standard 380 µm thick silicon wafer. Gas inlet channel as well as the electrodes and the actuator itself are all placed on the same substrate in order to reduce the size and cost of the system. During characterization, mechanical stability of the actuators and microvalves were studied by means of drop, temperature and shear tests in order to prove the reliability of the system. System performance tests proved stable pull-in voltages from 8,6 V to 11,6 V. Maximal gas flow through the valve was 110±5 ml/min at applied differential pressure of 2 bar

    Computation of current-voltage characteristics of weak links

    Full text link
    Simplified model for current-voltage characteristics of weak links is suggested. It is based on approach which considers Andreev reflections as responsible for the dissipative current through the metallic Josephson junction. The model allows to calculate current-voltage characteristics of weak links (superconductor - normal metal - superconductor junctions, microbridges, superconducting nanowires) for different thicknesses of the normal layer at different temperatures. The current-voltage characteristics of tin microbridges at different temperatures were computed.Comment: 11 pages, 5 figure

    Automated Deep Abstractions for Stochastic Chemical Reaction Networks

    Full text link
    Predicting stochastic cellular dynamics as emerging from the mechanistic models of molecular interactions is a long-standing challenge in systems biology: low-level chemical reaction network (CRN) models give raise to a highly-dimensional continuous-time Markov chain (CTMC) which is computationally demanding and often prohibitive to analyse in practice. A recently proposed abstraction method uses deep learning to replace this CTMC with a discrete-time continuous-space process, by training a mixture density deep neural network with traces sampled at regular time intervals (which can obtained either by simulating a given CRN or as time-series data from experiment). The major advantage of such abstraction is that it produces a computational model that is dramatically cheaper to execute, while preserving the statistical features of the training data. In general, the abstraction accuracy improves with the amount of training data. However, depending on a CRN, the overall quality of the method -- the efficiency gain and abstraction accuracy -- will also depend on the choice of neural network architecture given by hyper-parameters such as the layer types and connections between them. As a consequence, in practice, the modeller would have to take care of finding the suitable architecture manually, for each given CRN, through a tedious and time-consuming trial-and-error cycle. In this paper, we propose to further automatise deep abstractions for stochastic CRNs, through learning the optimal neural network architecture along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. We implement the method and demonstrate its performance on a number of representative CRNs with multi-modal emergent phenotypes

    A nickel electrostatic curved beam actuator for valve applications

    Get PDF
    AbstractIn this contribution an electrostatic curved beam actuator for microvalve applications is presented. The actuator consists of two layers of nickel consequently plated upon each other. The resulting double-layer cantilever beam has internal stress gradient due to variation of the electroplating process parameters for each layer. By accurate control of these parameters, desired bending heights were obtained. Compared to bimetallic bending actuators, the curvature of the single-metal beam is less dependable on ambient temperature. Thus, more stable performance under changing working conditions was ensured. In order to avoid sticking during the operation of the variable capacitor, stand-off bumps on the back-side of the actuator beam were provided. The actuator was integrated into an active 2/2-microvalve on a silicon substrate

    Automated Code Generation for Lattice Quantum Chromodynamics and beyond

    Get PDF
    We present here our ongoing work on a Domain Specific Language which aims to simplify Monte-Carlo simulations and measurements in the domain of Lattice Quantum Chromodynamics. The tool-chain, called Qiral, is used to produce high-performance OpenMP C code from LaTeX sources. We discuss conceptual issues and details of implementation and optimization. The comparison of the performance of the generated code to the well-established simulation software is also made

    The Relationship Between the Parameters of the Electric and the Acoustic Signal with the Destruction of Concrete Under Cyclic Freeze-Thaw

    Get PDF
    The paper presents the research results of the effect of formation crack process on the parameters of the electric and acoustic response to impact excitation. The physical basis of mechanoelectric transformations is described. It was found that with increasing number of freeze-thaw cycles observed increase of the attenuation coefficient of energy of the electric and acoustic response by a linear relationship. Differences in the dynamics of change of attenuation coefficient of energy of the electric and acoustic response associated with differences in formation and registration of electric and acoustic response
    corecore